CHROMATOGRAPHIC SEPARATION OF NITROGEN-CONTAINING SUBSTANCES IN THE SYSTEM GAS-LIQUID. III.* SEPARATION OF SOME 1-ALKYLPIPERIDINES

M.ŠAFÁŘ, V.GALÍK, Z.KAFKA and S.LANDA

Laboratory of Synthetic Fuels, Institute of Chemical Technology, Prague 6

Received July 7th, 1972

Relative elution volumes of 1-alkylpiperidines of b.p. up to 300°C have been determined. The stationary phases, polyethylene glycol 1500, Carbowax 20 M, tetrakis-(β -cyanoethoxy)-neopentane, and silicone oil AK 30 000 cSt, were fixed on porous sintered corundum.

This paper is a continuation of our previous study¹, solving the problem of the analysis of free alkylpiperidines of b.p. up to 300°C. In addition to other heterocyclic bases alkylpiperidines were analysed by Wawzonek and Culbertson². A mixture of pyridine, 2-methylpyridine, piperidine and 2-methylpiperidine was separated by Kametani³. Moll⁴ investigated a mixture of natural nitrogenous substances, piperidine, 2-propylpiperidine, 2,6-dimethylpiperidine and 1-methyl-2-propylpiperidine by gas-chromatography, 1-Ethylpiperidine and 1-ethyl-3-methylpiperidine were analysed by Ferles and Čaplovič⁵. In addition to these alkylpiperidines 1-methylpiperidine⁶ has also been chromatographed. Quantitative and qualitative determination of 2-methylpiperidine and 2-ethylpiperidine is described in⁷. Piperidine, 2-methylpiperidine and 3-methylpiperidine were also separated on a capillary column⁸. Pyridine bases and piperidine were analysed by Jakerson⁹ and coworkers. Piperidine was also chromatographically analysed in a mixture of organic bases¹⁰. Unsaturated piperidine derivatives and 1,3-dimethylpiperidine were studied by Janák and coworkers¹¹. Ferles and Holik have discussed the determination of 1-methylpiperidine and 1.3-dimethylpiperidine¹². Alkylpiperidines and alkylpiperideines were investigated by Grundon and Reynolds¹³, isoalkylpiperidines by Nazareva and Freidlin¹⁴. The effect of the steric arrangement of the 1-alkylcyclohexylpiperidines molecule on chromatographic behaviour is discussed by Cabaret and coworkers15.

EXPERIMENTAL

Apparatus: A gas chromatograph of our own construction was provided with a thermal conductivity detector¹. The glass chamber for evaporation, partly filled with glass beads, always had the temperature of 200°C, at column temperatures 175°C it was 240°C.

Columns and fillings: Glass columns were of U-shape, 6 mm I.D., 90 cm long. Carrier gas was nitrogen, with a flow rate of about 50 ml/min. Stationary phase carrier was porous sintered corundum (Jiskra, Tábor, Czechoslovakia) which had negligible adsorption capacity for piperi-

Part II: This Journal 37, 819 (1972).

1656

dine in comparison with Porovina. This carrier enabled the use of the stationary phases given in Table I.

Preparation of 1-alkylpiperidines: The majority of the investigated 1-alkylpiperidines is described in the preceding paper¹⁶. Other alkylpiperidines were prepared by the procedure described below. Their physical constants were in agreement with the literature data. 1-Isopropylpiperidine was prepared by alkylation of piperidine with isopropyl bromide, b.p. 149–150°C. 1-Cyclopentylpiperidine was prepared by hydrogenation of a mixture of piperidine and cyclopentanone on Raney nickel¹⁷, b.p. 209–210°C. 1,5-Dipiperidinopentane was prepared by hydrogenation of a quaternary salt obtained from 1,5-dibromopentane and pyridine¹⁸, b.p. 106–108°C/0·4 Torr. 1,2-Dipiperidinoethane was prepared from 1,2-dibromotenane and pyridine in an analogous manner, b.p. 126–128°C/10 Torr. Pyridine and piperidine (Lachema) were dried and distilled.

RESULTS AND DISCUSSION

The specific elution volume of piperidine (or 1-amylpiperidine) was calculated and taken as basis. A list of relative elution volumes of 1-alkylpiperidines is given in Table II. On polar stationary phases, *i.e.* polyethylene glycol 1 500, Carbowax 20 M, and tetrakis-(β -cyanoethoxy)neopentane, separation takes place on the basis of intermolecular interactions. Piperidine forms hydrogen bonds between the NH-group hydrogen and the electron pairs of oxygen or nitrogen atoms of the stationary phases.

1-Alkylpiperidines have smaller elution volumes then piperidine due to the loss of hydrogen in consequence of the substitution on the nitrogen atom; for example, 1-propylpiperidine on polyethylene glycol, 1-ethylpiperidine on Carbowax 20M, and 1-butylpiperidine on tetrakis- $(\beta$ -cyanoethoxy)neopentane have elution volumes

TABLE I Fillings of Chromatographic Column

Column	Stationary phase	Granulation of the carrier mesh	Concentration of the stationary phase, mass %	Weight of the filling, g	
А	polyethylene glycol 1 500 ^a	80-100	2.5	39.8	
в	Carbowax 20 M ^b	60 80	2.5	36-0	
С	tetrakis-(β-cyanoethoxy)- neopentane ^c	80-100	3.0	36.9	
D	silicone oil AK 30 000 cSt ^d Carbowax 20 M ^e	60- 80	2·5 0·4	36.3	

^a Lachema, Brno; ^b Carlo Erba, Milano; ^c see¹⁹; ^d Wacker, Munich; ^e Carbowax 20 M was applied as the first stationary phase in order to eliminate tailing.

practically identical with piperidine. A larger sterical shielding of the active center of the molecule by the branched alkyl group corresponds to smaller elution volumes of 1-isoalkylpiperidines in contrast to corresponding 1-alkylpiperidines.

Appreciable differences in elution volumes, especially on polar stationary phases (Table II, column B), were found for 1-cyclopentylpiperidine (2.25) and 1-amylpiperidine (1.00). The elution volume of 1-cyclopentylpiperidine is even larger than that of 1-hexylpiperidine (1.62).

TABLE II Relative Specific Elution Volumes of 1-Alkylpiperidines

Company	B.p.	Column A		Column B		Column C	Column D		
Compound		80°C	125°C	175°C	80°C	175°C	80°C	125°C	175°C
Piperidine	105	1.00	1.00	_	1.00	_	1.00	1.00	-
1-Methylpiperidine	106	0.40	0-50	_	0.44	-	0.35	1.00	_
1-Ethylpiperidine	127	0.67	0.75		0.75	-	0.20	1.80	·
1-Propylpiperidine	151	0.96	1.00		1.22		0.61	3.00	_
1-Isopropylpiperidine	149	0.96	1.00	_	1.22		0.61	3.00	_
1-Butylpiperidine	175	1.77	1.62	_	2.33		1.04	5.40	
1-Isobutylpiperidine	160	0.83	1.00	_	1.22		0.42	3.80	_
1-Amylpiperidine	198	3.26	2.75	1.00	4.33	1.00	1.81	9.40	1.00
1-Isoamylpiperidine	187	2.30	2.12	—	3.05	8741	1.31	7.60	
1-Cyclopentylpiperidine	210		6.38	2.18	3 —	2.25	5 5.11	14.80	1.60
1-Hexylpiperidine	218	6.10	4.62	1.64	8.32	1.62	3.15	16.80	1.60
1,2-Dipiperidinoethane	126-8/10		31-90	8-18	3 —	8.50) —	-	5.50
1,5-Dipiperidinopentane	106-8/0.4			26.70) —	28.50) —	_	19.60
Pyridine	115	2.27	2.0	-	2.72	-	2.85	1.20	_
V_{g}^{0} of piperidine, ml		224	54	38 ^a	156	31 ^a	152	35	72 ^a

^a Determined for 1-amylpiperidine.

A difficult separation problem is 1-isopropylpiperidine which both on polar and unpolar stationary phases has identical elution volumes as 1-propylpiperidine. Only on a column 2.25 m long, containing 3.5% of polyethylene glycol 6000, at 90°C, a differentiation of these isomers took place. Their relative elution volumes are: piperidine 1.00, 1-propylpiperidine 1.20, 1-isopropylpiperidine 1.25.

REFERENCES

- Šafář M., Kafka Z., Galík V., Landa S.: Sborník Vysoké školy chemicko-technologické D 13, 97 (1967).
- 2. Wawzonek S., Culbertson T. P.: J. Am. Chem. Soc. 82, 441 (1960).
- 3. Kametani F.: Yakugaku Zasshi 81, 489 (1961); Chem. Abstr. 55, 18449 (1961).
- 4. Moll F.: Naturwissenschaften 49, 450 (1952).
- 5. Ferles M., Čaplovič J.: This Journal 28, 1434 (1963).
- 6. Ferles M.: This Journal 29, 2323 (1964).
- 7. Vietti-Michelina M.: Z. Anal. Chem. 204, 110 (1964).
- 8. Heyns K., Stute R., Winkler J.: J. Chromatog. 21, 302 (1966).
- Jakerson V. I., Lafer L. I., Taits S. Z., Stojanovitch F. M., Litvinov V. P., Danyuschevsky J. L., Goldfarb J. L.: J. Chromatog. 23, 67 (1966).
- 10. Veenig H., Dupre G. D.: J. Gas Chromatog. 4, 153, (1966).
- 11. Janák J., Holík M., Ferles M.: This Journal 31, 1273 (1966).
- 12. Ferles M.; Holík M.: This Journal 31, 2416 (1966).
- 13. Grundon M. F., Reynolds B. E.: J. Chem. Soc. 1964, 2445.
- 14. Nazareva N. M., Freidlin L. Ch.: Izv. Akad. Nauk SSSR, Otd. Chim. Nauk 1966, 1820.
- 15. Cabaret D., Chauvière G., Welvart Z.: Bull. Soc. Chim. France 1969, 4457.
- 16. Galík V., Kafka Z., Landa S., Šafář M.: This Journal 33, 609 (1968).
- 17. Jones J. I.: J. Chem. Soc. 1950, 1392.
- 18. Gautier J. A., Renault J.: Compt. Rend. 225, 682 (1947).
- 19. Bruson H. A .: US-Pat. 2 401 607.

Translated by Ž. Procházka.